Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ion transport in organic mixed ionic-electronic conductors (OMIECs) is crucial due to its direct impact on device response time and operating mechanisms but is often assessed indirectly or necessitates extra assumptions. Operando x-ray fluorescence (XRF) is a powerful, direct probe for elemental characterization of bulk OMIECs and was used to directly quantify ion composition and mobility in a model OMIEC, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS), during device operation. The first cycle revealed slow electrowetting and cation-proton exchange. Subsequent cycles showed rapid response with minor cation fluctuation (~5%). Comparison with optical-tracked electrochromic fronts revealed mesoscale structure–dependent proton transport. The calculated effective ion mobility demonstrated thickness-dependent behavior, emphasizing an interfacial ion transport pathway with a higher mobile ion density. The decoupling of interfacial effects on bulk ion mobility and the decoupling of cation and proton migration elucidate ion transport in conventional and emerging OMIEC-based devices and has broader implications for other ionic conductors writ large.more » « less
-
null (Ed.)Polymeric mixed ionic-electronic conductors (MIECs) combine aspects of conjugated polymers, polymer electrolytes, and polyelectrolytes to simultaneously transport and couple ionic and electronic charges, opening exciting new applications in energy storage and conversion, bioelectronics, and display technologies. The many applications of polymeric MIECs lead to a wide range of transport conditions. Ionic and electronic transport are directly coupled through electrochemical doping, while the mechanisms of ionic and electronic transport depend on distinctly different chemical functionality, (macro)molecular structure, and morphology. Despite this, ionic and electronic transport are surprisingly tunable, independent of one another. We review the various types of polymeric MIECs, the mechanisms of ionic and electronic charge transport across conditions, and the interrelations between the two, with special emphasis on the unique aspects of polymeric MIEC transport phenomena. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
An official website of the United States government
